\mathbf{A}_{1}, A $_{2}$ AND A ${ }_{3}$ PRODUCTION IN $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$
 AT 25 AND $40 \mathrm{GeV} / c$

Yu.M. ANTIPOV*. G. ASCOLI**. R. BUSNELLO***, M.N. KIENZLE-FOCACCI***, W. KIENZLE ${ }^{\ddagger}$. R. KLANNER ${ }^{\ddagger \ddagger, ~}$ A.A. LEBEDEV*. P. LECOMTE***, V. ROINISHVILI ${ }^{\ddagger \ddagger \ddagger .}$
A. WEITSCH ${ }^{\ddagger}$ and F.A. YOTCH*
CERV-IHEP Boson Spectrometer Group
(Joint Experiment of the Institute of High-Energy Phisics. Serpukhor, USSR. and the European Organization for Nuclear Research, (ieneva Switzerland)

Received 27 June 1973

Abstract

A sample of -70000 fitted events of the reaction $\pi^{-} p \rightarrow \pi \pi \pi^{+} p$ at 25 and $40 \mathrm{GeV} / \mathrm{c}$ has been obtained with the CERN-IHEP bown spectrometer al the Serpukhov accelerator. A partial-wave analysis shows that (i) A_{1} and A_{3} cannot be deseribed by a Breit Wiener amplitude. (ii) the A_{2} can be well described by a Breit Wigner amplitude, (iii) although A_{1}, A_{3} and A_{2} have different properties, the energy dependence of their production cross section is similar.

1. Introduction

The reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$ has been measured at 25 and $40 \mathrm{GeV} / \mathrm{c}$ with the CERN-IIIL:P boson spectrometer at the proton accelerator at Serpukhov. We discussed in previous publications [1,2] how the data were obtained and analysed, as well as the general features of the reaction analysed by the partial-wave method ${ }^{\dagger}$.

* IHEP, Scrpukhov, USSR.
** University of Illinois, Urbana, IU., USA.
*** University of Geneva, Geneva, Switzerland.
${ }^{\prime}$ CI:RN, Geneva, Switzerland.
* University of Munich, Munich, Germany, now at University of Ilinois, Urbana, III., U.S.A. : : Institute of Physics. Tbilisi, USSR.
' University of Munich, now at Stanford Linear Accelerator Center, Calif., USA.
†The program to perform the partial-wave analysis was developed at the University of Illinois by G. Ascoli, D.V. Brock way, L. Eisenstein, M.L. Iolfredo, J.D. Ilansen, U.E.. Kruse and P.F. Schultz. In the papers of refs. $[3,4 \mid$ the authors applied the method to data of the reaction $\pi-p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$.

Here we present results about production and decay of the three spin-parity (J^{P}) states which dominate the 3π system below 2 GeV : the 1^{+}state, known as the A_{1} system. the 2^{+}state, known as the A_{2} system, the 2^{-}state, known as the A_{3} system.

We emphasize the fact that most of the results shown below are based on two samples of data at $p_{\text {lab }}=25$ and 40 GeV obtained by superposing data from runs covering different t-intervals (see table 1 of ref. [1]). For the study of t-dependence we use instead the result of a single run at $25 \mathrm{GeV} / c\left[|t|=0.10-0.22(\mathrm{GeV} / \mathrm{c})^{2}\right]$ and a single run at $40 \mathrm{GeV} ; \mathrm{c}\left[|t|=0.04-0.33(\mathrm{GeV} / c)^{2}\right]$.

2. The A_{1} system

2.1. Mass, width, and differontial cross scetion

We define the λ_{1} system as the 1^{+}state which decays ria s-wave into a ρ meson and a π meson ($1^{+} S$ in our notation). and dominates the 3π system below 1.4 (ieV . Figs. 1a, 16 and 10 show the 3π mass dependence of this state for the data measured at 25 and $40 \mathrm{GeV} / \mathrm{c}$ as well as for the combined data. The mass of the object is roughly 1150 MeV , its width about 300 MeV . In trying to get more accurate values for width and mass of the λ_{1}, one finds that the slope of the differential cross section for A_{1} production $\mid d o / d t$ ox exp (ht)| depends strongly on 3π mass. As we see from table 1 and fig. 2 it decreases from $\sim 12(\mathrm{CeV} / \mathrm{c}){ }^{2}$ to $\sim 7.5(\mathrm{CeV} / \mathrm{c})^{2}$ between 1.0 and 1.4 ($\mathrm{C} V \mathrm{~V}$. As a result, the mass and the width of the A_{1} system depend on the momentum transter interval selected and their unigue determination is thus impossible. In table I we also list the integrated cross section for the reaction

$$
\pi \mathrm{P} \rightarrow \hat{\Lambda}_{1} \mathrm{p}
$$

obtained by extrapolating the exp (bt) dependence of the differential cross section in the 3π mass intervals $1.0 \quad 1.2 \mathrm{GeV}$ and $1.2-1.4 \mathrm{GeV}$.

2.2. Interfiarence with other partial wates and resomance interpretation

The Λ_{1} interferes strongly with all other partial waves of the 3π system. The partial-wave method thus allows us to determine the mass dependence of the relative phase between A_{1} and the other partial waves. The phase difference between the production amplitudes for two partial waves a, b is given by the phase of the offdiagonal element of the 3π density matrix $[1]$:

$$
\phi_{a b}=\arg \left(\rho_{a b}\right) .
$$

If partial wave a corresponds to a resonance, which can be described by a Breit Wigner amplitude ($B W_{a}^{\prime}$), and b does not, the phase is expected to be

rio	$010 \leq 1: 16030$ (Gevic):	
25 Sev/s		

Fig. Ia. Intensities of different partial waves and interference phases in the A_{1} region tor the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p: 25 \mathrm{GeV}$ (combination of rums in the momentum transfer interats $\Delta t=0.14-0.30(\mathrm{CiCV} / c)^{2}$ and $\left.0.17-0.30(\mathrm{Cic} / \mathrm{c})^{2}\right\}$.

Fig. It. Intensities of different partial waves and interference phases in the A_{1} region tor the reaction $\pi p=\pi \pi \pi^{+} p: 40(\mathrm{ceV} / \mathrm{C}$ data $\mid د t=0.04-0.30 .0 .10 \cdots 0.30$ and $0.17 \cdots 0.30$ $(\mathrm{CiV} / \mathrm{c})^{2} \mathrm{l}$.

1月g. It. Intensities of difterent partial waves and interference phases in the A_{1} region for the reaction $\pi^{-p} \cdot \pi \pi^{-\pi} \pi^{\circ}$: 25 (ieV/c and 40 (icV/c combined.

Table 1
Slope of the differential cross section ($\mathrm{d} a / \mathrm{d} t \propto \mathrm{e}^{h t}$) and integrated cross section for production of the $1^{*} S$ state (the systematic error is given in the parentheses)

	$25 \mathrm{GeV} / \mathrm{c}$		$40 \mathrm{GeV} / \mathrm{c}$	
	--.....		--	- . . ${ }^{\text {a }}$
$\Delta m_{3 \pi}$	b	$\sigma\left(A_{1}\right)$	b	$u\left(A_{1}\right)$
(GaV)	$\left[(\mathrm{GeV} / c)^{-2}\right]$	($\mu \mathrm{b}$)	$\left.[1 \mathrm{GeV} / \mathrm{c})^{-2}\right]$	($\mu \mathrm{b}$)
1.0-1.2	12.1 ± 1.1	$92 \pm 10(\pm 10)$	11.9 ± 1.1	$72 \pm 5(\pm 7)$
1.2-1.4	8.0 ± 1.0	$59 \pm 4(\pm 6)$	6.8 ± 0.8	$52 \pm 3(\pm 6)$

Fig. 2. Difterential crows wetion for the reaction $\pi^{-} \mathrm{p} \cdot \mathrm{A} p \mathrm{p}$ at 25 and $40 \mathrm{GeV} / \mathrm{c}$ in the mass intervals $1.0-1.2 \mathrm{GeV}$ and $1.2-1.4$ (ieV.

$$
\phi_{a b}=\phi_{0}+\arg \left(B W_{a}\right)
$$

where ϕ_{0} is constant or a slowly varying function of $m_{3 \pi}$. From fig. I one sees that the intensities of the dominant background waves $\left(0^{*} \mathrm{~S}, 1^{+} \mathrm{P}, 2^{-} \mathrm{P}\right)$ are slowly varying over the A_{1} peak. We therefore expect that they provide reference phases to measure the A_{1} phase. If the A_{1} is a usual Breit-Wigner resonance we expect its phase to increase by 90° over one full width. From fig. I we find that none of the
interference phases shows this behaviour. We thus conclude that the total 1^{+}S state cannot be described by a simple Breit-Wigner amplitude.

It may be useful to comment on the limits that our results place on the production of a real, narrow A_{1} resonance ($A_{1}^{R}, J^{P}=1^{+}$. decay to $\rho^{0} \pi^{-}$) in addition to the broad $1^{+}(S \rightarrow \rho \pi)$ effect $\left(A_{1}^{B}\right)$. We quote three crude upper limits ($\sim 95 \%$ confidence level) on the cross section $\pi^{-} p \rightarrow A_{1}^{R} p\left(A_{1}^{\mathrm{R}} \rightarrow \rho^{0} \pi^{-}\right)$at $p_{\text {lab }}=25-40 \mathrm{GeV} / c$. obtained from fig. 1 c under different assumptions regarding the production and decay of A_{1}^{R} :
(a) A_{1}^{R} decays by s-wave. $\mathrm{A}_{1}^{\mathrm{R}}$ and $\mathrm{A}_{1}^{\mathrm{B}}$ are coherently produced: $\sigma\left(\mathrm{A}_{1}^{\mathrm{R}} \rightarrow \rho^{0} \pi^{-}\right)$ $\leq 0.2 \mu \mathrm{~b}$;
(b) $\mathrm{A}_{1}^{\mathrm{R}}$ decays by s-wave, $\mathrm{A}_{1}^{\mathrm{R}}$ and $\mathrm{A}_{1}^{\mathrm{B}}$ are incoherently produced: $\sigma\left(A_{l}^{R} \rightarrow \rho^{0} \pi^{-}\right) \leqslant 5 \mu \mathrm{~b}$:
(c) A_{1}^{R} decays by d-wave: $\sigma\left(\mathrm{A}_{1}^{\mathrm{R}} \rightarrow \rho^{0} \pi^{-}\right) \leqq 0.3 \mu \mathrm{~b}$.

2.3. Polarization

With the partial-wave method we also determine the polarization density matrix of the A_{1} system in the Gottfried-Jackson system*. Table 2 shows the results for the $25 \mathrm{GeV} / \mathrm{c}$ and $40 \mathrm{GeV} / \mathrm{c}$ data in the mass bin $1.0-1.2 \mathrm{GeV}$. The element ρ_{00} dominates, being about 0.95 . The element combination $\rho_{11}+\rho_{11}$, which corresponds to unnatural parity exchange [1] is compatible with zero. The interference element between the $M=0$ and $|M|=1$ components ρ_{01} is real, and is compatible with the maximum value allowed by the positivity condition of the density matrix. This implies that the Λ_{1} is produced in a pure $M=0$ state, in a system which can be reached from the Gottried Jackson system by a rotation of the angle 0 around the normal to the production plane. Figs. 3 a and 3 b show how 0 depends on momentum transfer and 3π mass. The value of 0 is close to $10(\pm 3)^{\circ}$, which indicates a small but significant deviation from t-channel helicity conservation.

Table 2
A_{1} polarization $\left(J^{P}=1^{+}, m_{3 \pi}=1.0-1.2(\mathrm{GeV})\right.$

		$p_{\text {lab }}=25 \mathrm{cicV} / \mathrm{c}$	$m_{\text {ab }}=40$ (icV/c
"Vatural parity exchange"	ρ_{00}	$0.94 \div 0.02$	$0.95: 0.02$
	$\rho_{11}-\rho_{1-1}$	0.06 ± 0.02	$0.05-0.02$
	$\operatorname{Re}\left(\rho_{10}\right)$	-0.15 ± 0.02	$-0.13+0.022$
	$\operatorname{Im}\left(\rho_{10}\right)$	0.01 ± 0.03	0.00 ± 0.03
--			----
"Unnatural parity exchange"	$\rho_{11}+\rho_{1-1}$	0.000×0.02	0.00 : 0.02

[^0]

Pig. 3. Polariation of the A_{1} system. The dependence of the rotation angle θ. between the Gotfried - Jackson system and the system where the Λ_{1} is in pure $M=0$ state, is shown as a function of momentum transfer $t . \theta_{c}$ is the angle between the direction of the incident particle and the direction opposite to the recoil proton in the 3π c.m. system (crossing angle).

3. The A_{2} system

We define the A_{2} as the 2^{+}state, which decays via d-wave into $\rho \pi\left(2^{+} \mathrm{D}\right.$ in our notation) and peaks around 1.3 (ieV with a full width of roughly 100 MeV . We motice that it is the only state with different naturality $\|1\|\left[P(1)^{\prime}\right]$ from the incident π meson, which is strongly produced in the reaction $\pi p \rightarrow \pi^{-} \pi^{-} \pi^{+}$p. Fig. $4 a$ shows the mass dependence of the 2^{+}D state. A fit of a relativistic d-wave Breit Wigner * without background to the data, yields the values for mass and width of the A_{2} :

$$
M_{A_{2}}=1315 \pm 5 \mathrm{McV}, \quad \Gamma_{A_{2}}=115 \pm 15 \mathrm{McV}
$$

The result of the fit is drawn as a solid line in fig. 4a. Fig. 4 b shows the dependence
*We use the parametrization

$$
\mathrm{BW}(m)=\frac{m M_{\mathrm{A}_{2}} \mathrm{r}(m)}{\left(m^{2}-M_{\mathrm{A}_{2}}^{2}\right)^{2}+M_{\mathrm{A}_{2}}^{2} \mathrm{r}^{2}(m)}, \quad r(m)=\mathrm{r}_{\mathrm{A}_{2}}(q / 40)^{5} .
$$

lig. 4. (a) Intensity of the 2^{+}D wave at $40 \mathrm{GeV} / \mathrm{c}$ versus 3π mass. (b) Interference phase of the 2^{+}D wave with the 1^{+}waves versus 3π mass.
of the interference phase between the $2^{+} \mathrm{D}$ state and the $1^{+} \mathrm{S}$ state (and the $1^{+} \mathrm{P}$ state) on 3π mass. The solid line is the variation we expect from the phase of a Breit -Wigner amplitude for the A_{2} assuming constant phases for the 1^{+}waves. The rapid increase of 90° over one full width of the A_{2} peak is clearly seen in the data, and we thus conclude that the $2^{+} \mathrm{D}$ state resonates at the A_{2} mass.

In fig. 5 we show the differential cross section for the reaction

$$
\pi^{-} p \rightarrow A_{2}^{-} p
$$

Fig. 5. Differential cross section for A_{2} prodaction at 25 and 40 CeVic in the 3π mass interval $1.2-1.4 \mathrm{GeV}$.
in the mass interval between $1.2-1.4 \mathrm{GeV}$. In the $40 \mathrm{GeV} / \mathrm{c}$ data which cover the momentum transfer interval 0.04 to $0.33(\mathrm{GeV} / c)^{2}$ there is a significant dip towards small | $|\mid$ values. The parametrization

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t} \propto|t| \mathrm{e}^{h t}
$$

describes the data well and we obtain the parameters listed in table 3 . Integration over the full t-range gives the total cross section $\sigma\left(\Lambda_{2}\right)$.

Table 3
 of the $A_{2}\left(2^{\circ} 1\right), 1.2$ - 1.4 (icV).

The systematicerror is indicaled in parcotheses. The momentum transter interval at $25 \mathrm{GeV} / \mathrm{c}$ is fou small to decermine b from the data. For the extrapolation a value of $8.5(6,0 V / c)^{2}$ was used.

Table 4 lists the density matrix elements for A_{2} production. The combination $\rho_{11}+\rho_{1-1}$, which is the $|M|=1$ state produced by natural parity exchange, dominates and is close to one. All combinations which can be produced by unnatural parity exchange are zero within the statistical sensitivity of the data. For comparison we also quote the matrix elements obtamed from the $\eta^{\prime \prime} \pi$ decay mode at $40 \mathrm{GeV} / \mathrm{c}$. where the A_{2} signal appears with very little background [5].

Table 4
A: polarization $\left(J^{P}=2^{+}, m_{3 \pi}=1.2-1.4 \mathrm{GeV}\right)$

"Natural parity exchange"	$\begin{aligned} & \rho^{0} \pi^{-} \\ & p_{1 \mathrm{ab}}=25 \mathrm{GeV} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \rho^{0} \pi^{-} \\ & p_{\mathrm{lab}}=40 \mathrm{GeV} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \eta^{\prime \prime} \pi \\ & p_{\mathrm{lab}}=40 \mathrm{GeV} / c \end{aligned}$
$\overline{\rho_{11}+\rho_{1-1}}$	0.90 ± 0.04	0.93 ± 0.04	0.97 ± 0.06
$\rho_{22}-\rho_{2-2}$	0.06 ± 0.05	0.07 ± 0.04	0.03 ± 0.05
$\operatorname{RE}\left(\rho_{21}\right)$	0.12 ± 0.04	0.10 ± 0.03	0.02 ± 0.07
$\operatorname{Im}\left(\rho_{21}\right)$	0.01 ± 0.12	-0.03 ± 0.03	
Trace	0.96 ± 0.04	0.99 ± 0.04	1.00 ± 0.08
"Unnatural parity exchange"			
Trace	0.04 ± 0.04	0.01 ± 0.04	0.00 ± 0.07

4. The A_{3} region

In this paragraph we discuss the partial-wave analysis in the 3π mass interval $1.5-2.0 \mathrm{GeV}$. We concentrate on the $40 \mathrm{GeV} / c$ data, for which the average acceptance of the magnetic spectrometer is 0.7 in the A_{3} region (see fig. I of ref. [1]). (The acceptance for our 25 GeV data is about 0.3 only and the statistical sensitivity of these data is lower. We note, however, that they show within errors the same features as the $40 \mathrm{GeV} / c$ data.)

A difficulty of the partial-wave analysis of the A_{3} region is that the number of weak but significant partial waves is large; it is therefore difficult to vary them all simultaneously. Our procedure is therefore to ask the following specific questions, and to see how stable the answers are when different sets of partial waves are chosen
(i) which partial wave is responsible for the Λ_{3} enhancement?
(ii) is the A_{3} a resonance?
(iii) what are its production parameters (cross section, polarization)?
(iv) are there candidates for further resonances in the interval $1.5-2.0 \mathrm{GeV}$?

The data have been analysed using several different sets of partial waves. The results shown in fig. 6 were obtained using the two sets listed in table 5 . In both sets we restrict the polarizations to states

$$
\left|J^{P} 0\right\rangle \text { for } J^{P}=0^{-}, 1^{+}, \ldots, \quad\left|J^{P} 1\right\rangle+\left|J^{P}-1\right\rangle \text { for } J^{P}=1^{--}, 2^{+}, \ldots .
$$

The choice is based on the results obtained in $m_{3 \pi}=1.0-1.4 \mathrm{GeV}$ in this experiment and in $m_{3 \pi}=1.5-1.8 \mathrm{GeV}$ in bubble chamber data (ref. [4|). Set I is the set used in ref. [4]. Set 11 includes systematically all partial waves with $l=0,1,2$, for $\epsilon \pi$ and $\rho \pi$ decay and $l=0,1$ for $f \pi$ decay. In addition, set II includes the partial wave $3^{-}(\mathrm{D} \rightarrow \mathrm{f} \pi)$.

A comparison of the result of the fit (hypothesis I) with the data is shown in figs. 7 and 8 . We find that the fit describes the data well.

Dig. 6. Partial wave analysis of the " A_{3} region" for the reaction $\pi p \cdots \pi^{-} \pi \pi^{+} p$ at 40 (icV/c. For a detailed description of the different sets of partial waves (hypotheses) used, see table 5 and the text. for completeness we have also included the $1.0 \quad 1.4$ mass region tor hypotheses 1 .

Table 5
Sets of partial waves used in the analysis of the \boldsymbol{A}_{3} region (see fig. 6)

Hyporthexis 1 comsides with the choice of Ascoliet al. given in ref. (4).

Fiy. 6. See caption on opposite page.

In fig. 6. we note the following features.
The main partial waves [i.e. $\left.0^{-} S(\epsilon \pi), 1^{+} S(\rho \pi), 2^{-} S(f \pi), 2^{-} P(\rho \pi), 3^{+} P(f \pi)\right]$ do not significantly depend on how many additional weaker states are admitted in the analysis. From this we conclude that hypothesis I, using 10 waves only, is as suitable as the more complete set of 15 waves of hypothesis II |the additional small contributions such as, for example, $2^{-} \mathrm{D}(\epsilon \pi), 1^{-1} \mathbf{P}(\rho \pi), 3^{-} \mathrm{D}(\mathrm{f} \pi), 1^{+} \mathrm{P}(\mathrm{f} \pi)$, etc., seem to take their events mostly from $1^{+} P(\epsilon \pi) \mid$.

In the $1.4-2.0 \mathrm{GeV}$ region a clear enhancement is seen in the $2 \mathrm{~S}(\mathrm{f} \pi)$ wave at a mass $M=1.65 \pm 0.03 \mathrm{GeV}$ with a width $\Gamma=0.30 \pm 0.05 \mathrm{GeV}$. We identify this with the " A_{3} " peak observed near 1.7 GeV in the missing-mass spectrum and in the 3π effective-mass spectrum, since no other wave shows a peak of comparable strengtl in this mass region.

In order to clarify the resonance nature of the A_{3} enhancement, we have measure its phase with respect to other partial waves in the same region.

Fig. 7. Comparison of the data mcasured at $40 \mathrm{GeV} / \mathrm{c}$ (histogram) with the partial wave fit (smooth curve) in the 3π mass interval $1.6-1.7 \mathrm{GeV}$: (a) $m_{\pi^{+}}^{-}$(2 combinations per event); (b) m_{π}^{2}.

This is possible as the A_{3} interferes strongly with all other partial waves. We show in fig. 9 the phases of $2^{\circ} \mathrm{S}(\mathrm{f} \pi)$ relative to other states. The phases shown have been chosen because they appear to be reasonably well measured. In all cases the relative phase appears to be, within errors, independent of 3π mass. We conclude that the A_{3} amplitude does not have the behaviour expected for a Breit-Wigner resonance.

As we have done for the A_{1} we comment on the possibility that a real narrow 2 resonance (A_{3}^{K}) is produced at $25 \cdots 40 \mathrm{GeV} / \mathrm{c}$. We obtain the following upper limits: $v\left(A_{3}^{R} \rightarrow f^{\prime \prime} \pi^{-}\right.$, by s-wave) $\leq 0.05 \mu \mathrm{~b}(1.4 \mu \mathrm{~b})$ if $\mathrm{A}_{3}^{\mathrm{R}}$ is coherent (incoherent) with the broad $2^{-} \mathrm{S}(\mathrm{f} \pi)$ enhancement, and $\sigma\left(\mathrm{A}_{3}^{R} \rightarrow \rho^{()} \pi^{-}\right.$, by p -wave $) \leqq 1.4 \mu \mathrm{~b}$. The limits refer in all cases to the final state $\pi^{+} \pi^{-} \pi^{-}$only.

The polarization density matrix* of the $\mathrm{A}_{3}\left(2^{-} \mathrm{S}\right.$ wave) has been determined by fitting the data in the 3π mass interval $1.5-1.8 \mathrm{GeV}$ with all the spin projections of the $2 S$ state, in addition to hypothesis I. The matrix clements obtained are shown in table 6: $\rho_{(K)}$ is largest, close to $1 ; \rho_{11}$ and ρ_{1-1} are still measurable; while ρ_{22} and $\rho_{2}, 2$ are compatible witi zero, in agreement with bubble chamber data at

[^1]

Fig. 8. Comparison of the data measured at $40 \mathrm{CeV} / \mathrm{c}$ (histogram) with the partial wave fit (smooth curve) in the 3π mass interval $1.6-1.7 \mathrm{GeV}$. Distribution of the tialer angles of the 3π system measured from the Gottiried Jackson axes: a) α, azimuth of the π^{+};b) cos 3 . polar angle of the $\pi^{+} ;$e) γ, angle between the decay plane and the plane formed by $\pi_{\text {in }}^{-}$and $\pi_{\text {out }}^{+}$
lower energies $\left\{4 \mid\right.$. The interference term ρ_{10} has the components Re $\rho_{10}=$ $0.19 \pm 0.02, \operatorname{lin} \rho_{10}=0.02 \pm 0.03$.

The slope b of the differential cross section $\mathrm{d} \sigma / \mathrm{d} t$ of the $\mathrm{A}_{3}\left(2^{-} \mathrm{S}, M=0\right)$ has been determined by fitting the intensity of the $2^{-} S$ state (hypothesis I) of the data in the momentum transfer interval $0.04<|t|<0.30(\mathrm{GeV} / c)^{2}$ and in the mass interval $1.5<m_{3 n}<1.8 \mathrm{GeV}$ with the expression $\mathrm{d} \sigma / \mathrm{d} t \sim \exp (b t)$, as shown in fig. 10. A value of $b=9.9 \pm 1.2(\mathrm{GcV} / c)^{-2}$ was obtained. For all the remaining events we find $b=6.4 \pm 0.6(\mathrm{GeV} / \mathrm{c})^{-2}$ in the same interval. It has been checked that the slope is the same for $1.50-1.65 \mathrm{GeV}$ and $1.65-1.80 \mathrm{GeV}$.

We measure a cross section of $15.6 \pm 1.1 \mu \mathrm{~b}$ for the reaction

Fig. 9. Intensity of the $2^{\circ} \mathrm{S}(\mathrm{f} \pi)$ partial wave and interference in the A_{3} region, measured at 40) (icV/c.

Table 6
A_{3} polarization $\left(J^{P}=2^{-}, m_{3 \pi}=1.5-1.8 \mathrm{GeV}\right)(40 \mathrm{GeV} / \mathrm{c}$ data $)$

[^2]

Fig. 10. It -dependence of the $A_{3}\left(2^{--} S\right.$ wave, $\left.M=0\right)$. The slope parancter $b=9.9: 1.2$ was determined by a fit with exp ($b t$). The upper points are for all remaining events in the same mass interval $1.50-1.80 \mathrm{GeV}$. They have a slope of $b=6.4 \geq 0.6$. The data are taken at $m_{\text {inc }}=40(i c V / c$.
in the intervals $1.5<m_{3 \pi}<1.8 \mathrm{GeV}$ and $0.04<1 t \mid<0.30(\mathrm{GeV} / c)^{2}$ at $40 \mathrm{GeV} / c$. When integrating the differential cross section with the above slope over all values of t, we obtain a cross section of $25.1 \pm 1.8 \mu \mathrm{~b}$ with an estimated systematic error of $\pm 3.0 \mu \mathrm{~b}$. At $25 \mathrm{GeV} / \mathrm{c}$ an integrated cross section of $36 \pm 11 \mu \mathrm{~b}$ was measured (see fig. 14).

 relative to $2 P^{\prime}(\mu \pi), I^{\prime} P^{\prime}(\mu \pi)$ and $\left.\right|^{\prime} S(\mu \pi)$.

5. A possible further resonance

Concerning the question of further resonance effects in our data, we note the presence of a small enhancement in the partial wave $2^{+} P(f \pi)$ (see fig. 6). The enhancement has a mass of $M \sim 1.75 \mathrm{GeV}$ and a width $\mathrm{I} \sim 0.2 \mathrm{GeV}$. The relative phases (see fig. 11) are not inconsistent with a resonance interpretation*. We note, however that this is a small effeet [the ratio $2^{+}{ }^{2}(f \pi)$ events/total events is $320 / 3700$ events in the bin $m_{3 \pi}=1.7-1.8 \mathrm{GeV} \mid$ and that - due to insufficient statistics in this mass region - we have not been able to include higher partial waves in our analysis. We therefore feel that a definite resonance interpretation of the effect requires additional data.
 wparate waves, ie they are not assumed to be fally collerent (asfor example, in the analy sis of tị. 6).

Fig. 12. Energy dependence of the integrated A_{1} cross section $\sigma\left(A_{1}\right)$ for the 3π mass interval $1.0-1.2 \mathrm{GeV}$. The solid line is a fit $\sigma\left(\mathrm{A}_{1}\right) \propto p_{\text {inc }}^{n}$ with $n=-0.40 \pm 0.06$.

6. Production of A_{1}, A_{2} and A_{3}

In this section we compare the results of this experiment with data from lower energies. We first discuss the energy dependence of Λ_{1}, Λ_{2} and Λ_{3} production.

We first note that the polarization of the Λ_{1} is fairly energy-independent. In the momentum transfer interval $0-0.4(\mathrm{CeV} / \mathrm{c})^{2}$ an analysis of bubble chamber data at 5.7 and $7.5 \mathrm{CieV} / \mathrm{c}$ yields [3a], for the most significant density matrix elements in the Gottfried Jackson system,

$$
\rho_{00}=0.93 \pm 0.02, \quad \operatorname{Re}\left(\rho_{01}\right)=-0.09 \pm 0.02,
$$

which are very close to the values found at 25 and $40 \mathrm{GeV} / \mathrm{c}$ (table 2).
Fig. 12 shows a compilation of integrated cross sections for Λ_{1} production* from bubble chamber data between 5 and $25 \mathrm{GeV} / \mathrm{c}[3 \mathrm{~b}]$, and the data of this experiment at 25 and $40 \mathrm{GeV} / \mathrm{c}$.

Fitting the expression $\sigma \propto p_{\text {inc }}^{n}$ to the data we find

$$
n=-0.40 \pm 0.06
$$

In the case of the A_{2} meson, the polarization density matrix changes with beam momentum. Whereas the analysis of bubble chamber data at 5.7 and $7.5 \mathrm{GeV} / \mathrm{c}$ [3b] yields, for the most significant density matrix elements in the Gottfried-Jackson, in the momentum transfer interval $0-0.4\left(\mathrm{GeV} / c^{\prime}\right)^{2}$,

[^3]

1*ix. 13. Vnergy dependence of the natural $\mathrm{oN}_{\mathrm{N}} \mathrm{A}_{2}$) and unnatural of(\boldsymbol{A}_{2}) parity exhange contributions to the λ_{2} cross section in the 3π mass interval 1.2. 1.t (icv. The solid lines are fits $0\left(A_{2}\right) \times f_{\text {inc }}^{\prime \prime}$ with $" N_{N}=0.51: 10.05$ and $n_{0}=-2.0 \pm 0.3$.

$$
\rho_{(01)}=0.12 \pm 0.04, \quad \rho_{11}+\rho_{1-1}=0.78 \pm 0.05:
$$

the analysis of this experiment at $40 \mathrm{GeV} / \mathrm{c}$ yields (see also table 4)

$$
\rho_{(0)}=0.01 \pm 0.02 \quad \rho_{11}+\rho_{1-1}=0.93 \pm 0.04 .
$$

In fig. 13 we therefore show the energy dependence [3c] of the cross section* for the polarization states which can be produced by natural and unnatural parity exchange (in the high-energy limit) separately. Fitting the expression $\sigma \propto p_{\text {inc }}^{\prime \prime}$ to the data we find
natural parity exchange: $n=-0.51 \pm 0.05, x^{2}=8.4 / \mathrm{NDF}=9$.
unnatural parity exchange $n=-2.0 \pm 0.3, x^{2}=0.9 / \mathrm{NDF}=4$.
The A_{2} walwaysdefined as the 2^{} D state in the 3π mass interval 1.2-1.4 GeV.

$$
\left(15<m_{3 n}<1.8 \mathrm{GeV}\right)
$$

Fig. 14. Energy dependence of the integrated A_{3} cross section $\sigma\left(A_{3}\right)$ for the 3π mass interval $1.5-1.8 \mathrm{GeV}$. The solid line is a fit $\sigma\left(\mathrm{A}_{3}\right) \propto p_{\text {inc }}^{n}$ with $n=-0.57 \pm 0.21$.

Fig. 15. Interference between A_{1} and A_{2} at $40 \mathrm{GeV} / c$. (a) Coherence between A_{1} and A_{2} versus momentum transfer. (b) Interference phase between A_{1} and A_{2} at the centre of the A_{2} versus nomentum transier.

A comparison of the cross sections for A_{3} production* with lower energy data is shown in fig. 14. When fitting the expression $\sigma \propto p_{\text {inc }}^{n}$ for the data above $11 \mathrm{GeV} / c$, we obtain

$$
n=-0.57 \pm 0.21
$$

*The A_{3} is defined as the 2^{-S} state in the mass interval $1.5-1.8 \mathrm{GeV}$.

We obtain additional information on the A_{1} and A_{2} production from the results about interference between the A_{1} and A_{2} mesons. From fig. 15 a we see that at $40 \mathrm{GeV} / \mathrm{c}$ the intensity of interference between A_{1} and A_{2} is close to the maximum value allowed by the positivity condition of the density matrix, suggesting the same dependence of both processes on the spin variables of the proton. As the differential cross section of A_{1} production does not show any indication of a dip in the forward direction, we guess that both A_{1} and A_{2} are produced by non-flip amplitudes with respect to the proton spin.

Fig. 15b shows the dependence of the relative phase of A_{1} and A_{2}, at the mass of the A_{2} meson*, as a function of momentum transfer. In the Regee pole model this directly measures the difference in slope of the two Regge trajectories exchanged Within the large errors the phase is independent of momentum transfer.

7. Conclusions

The partial wave analysis of the 3π system in the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$ at 25 and $40 \mathrm{CeV} / \mathrm{C}$ has yielded the following results on the $A_{1} . A_{2}$ and A_{3} systems:
(i) the A_{2} can be well described by a Breit - Wigner amplitude:
(ii) Λ_{1} and Λ_{3} camnot be described by a Breit Wigner amplitude;
(iii) the energy dependence of A_{1}, A_{2} and A_{3} production are similar. and approximately like $p_{\text {inc }}^{0.5}$

References

 nal report 73.9 (1973), and thess at (lneversity of Manich (1973).
|3a| (i. Anolietal., Phys. Rev. L.etters 26(1971)929.
|3h| U.V. Brachway, Study of the threepion timal vate interactions in the reation

[30] (i. Ascolictal., Summary of the experimental situation regarding A_{1}, A_{2} and A_{1} pro-
 1972.

1+1 (8. Asoblictal. Phys. Rev. 1)7 (197.3)669.
[5] Y...I. Antipotetal. Nucl. Phys. 1363(1973)175.

[^4]
[^0]: * As discussed in rel. |l|, we assume the same polarization for both $1^{+} \operatorname{S}(\rho \pi)$ and $1+$ P(e π) waves.

[^1]: * As discussed in ref. (1|, we assume the same polarization for both $2^{*} S(f \pi)$ and $2 \boldsymbol{P}(\rho \pi)$ waves.

[^2]: "Natural parity exchange"

 | ρ_{00} | 0.88 ± 0.04 | | |
 | :--- | ---: | ---: | ---: |
 | $\rho_{11}-\rho_{1-1}$ | 0.10 ± 0.02 | | |
 | $\rho_{22}+\rho_{2-2}$ | 0.01 ± 0.02 | | |
 | ρ_{10} | 0.19 ± 0.02 | $+i$ | (0.02 ± 0.03) |
 | ρ_{20} | -0.06 ± 0.02 | $+i$ | (0.01 ± 0.03) |
 | ρ_{21} | -0.02 ± 0.01 | $+i$ | (-0.01 ± 0.03) |
 | Trace | 0.99 ± 0.02 | | |

 "Unnatural parity exchange"
 Trace
 0.01 ± 0.02

[^3]: * The A_{1} is detined as the $1^{*} \mathrm{~S}$ state in the 3π mass interval $1.0-1.2 \mathrm{GeV}$.

[^4]: been subtracted

